14 research outputs found

    LibiD: Reliable identification of obfuscated third-party android libraries

    Get PDF
    Third-party libraries are vital components of Android apps, yet they can also introduce serious security threats and impede the accuracy and reliability of app analysis tasks, such as app clone detection. Several library detection approaches have been proposed to address these problems. However, we show these techniques are not robust against popular code obfuscators, such as ProGuard, which is now used in nearly half of all apps. We then present LibID, a library detection tool that is more resilient to code shrinking and package modification than state-of-the-art tools. We show that the library identification problem can be formulated using binary integer programming models. LibID is able to identify specific versions of third-party libraries in candidate apps through static analysis of app binaries coupled with a database of third-party libraries. We propose a novel approach to generate synthetic apps to tune the detection thresholds. Then, we use F-Droid apps as the ground truth to evaluate LibID under different obfuscation settings, which shows that LibID is more robust to code obfuscators than state-of-the-art tools. Finally, we demonstrate the utility of LibID by detecting the use of a vulnerable version of the OkHttp library in nearly 10% of 3,958 most popular apps on the Google Play Store.The Boeing Company, China Scholarship Council, Microsoft Researc

    Treatment of Infection-Related Non-Unions with Bioactive Glass—A Promising Approach or Just Another Method of Dead Space Management?

    No full text
    The treatment of infected and non-infected non-unions remains a major challenge in trauma surgery. Due to the limited availability of autologous bone grafts and the need for local anti-infective treatment, bone substitutes have been the focus of tissue engineering for years. In this context, bioactive glasses are promising, especially regarding their anti-infective potential, which could reduce the need for local and systemic treatment with conventional antibiotics. The aim of this study was to investigate the osteoinductive and osteoconductive effects, as well as the anti-infectious potential, of S53P4 using a standardized non-union model, which had not been investigated previously. Using an already established sequential animal model in infected and non-infected rat femora, we were able to investigate bioactive glass S53P4 under realistic non-union conditions regarding its osteoinductive, osteoconductive and anti-infective potential with the use of µCT scans, biomechanical testing and histological, as well as microbiological, analysis. Although S53P4 did not lead to a stable union in the non-infected or the infected setting, µCT analysis revealed an osteoinductive effect of S53P4 under non-infected conditions, which was diminished under infected conditions. The osteoconductive effect of S53P4 remained almost negligible in histological analysis, even 8 weeks after treatment. Additionally, the expected anti-infective effect could not be demonstrated. Our data suggested that S53P4 should not be used in infected non-unions, especially in those with large bone defects

    Efficacy of an Antibiotic Loaded Ceramic-Based Bone Graft Substitute for the Treatment of Infected Non-Unions

    No full text
    The treatment of non-unions is often complicated by segmental bone defects and bacterial colonization. Because of the limited availability of autologous bone grafts, tissue engineering focuses on antibiotic-loaded bone graft substitutes. HACaS+G is a resorbable calcium sulphate-hydroxyapatite loaded with gentamicin. The osteoinductive, osteoconductive, and anti-infective effect of HACaS+G has already been demonstrated in clinical studies on patients with chronic osteomyelitis. However, especially for the treatment of infected non-unions with segmental bone defects by HACaS+G, reliable clinical testing is difficult and sufficient experimental data are lacking. We used an already established sequential animal model in infected and non-infected rat femora to investigate the osteoinductive, osteoconductive, and anti-infective efficacy of HACaS+G for the treatment of infected non-unions. In biomechanical testing, bone consolidation could not be observed under infected and non-infected conditions. Only a prophylactic effect against infections, but no eradication, could be verified in the microbiological analysis. Using µ-CT scans and histology, osteoinduction was detected in both the infected and non-infected bone, whereas osteoconduction occurred only in the non-infected setting. Our data showed that HACaS+G is osteoinductive, but does not have added benefits in infected non-unions in terms of osteoconduction and mechanical bone stability, especially in those with segmental bone defects
    corecore